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Numerical simulation of side-
heated free convection loop

placed in transverse magnetic
field; the induced electric

current
Nesreen K. Ghaddar

American University of Beirut, Faculty of Engineering and Architecture,
Beirut, Lebanon

1. Introduction
Laminar natural convection flow in closed loops has been studied by many
investigators since it has a considerable number of practical applications in the
design of thermal energy systems, thermosyphonic, solar applications and
nuclear technologies. When a transverse magnetic field is applied to an
electrically conducting fluid in the loop, convective hydrodynamic motion is
damped and an electric current is induced.

The method may be very important in control of the thermosyphonic motion
in some industrial processes or energy systems that require control of flow
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Nomenclature
Bo = magnetic field strength
Cp = specific heat
D = channel width
d = half-channel width, D/2
g = gravitational acceleration
Gr = Grashof number, gβ∆TD3/ν2

h = heat transfer coefficient in the loop channel
Ha = Hartmann number, BoD(σ/ρo ν)1/2

j = induced electric current
k = thermal conductivity of the fluid
L = vertical height of half the loop
2l = height of the insulated region
Nu = Nusselt number, hD/k
p = pressure
Pr = Prandtl Number, ν/α
QL = heat transfer rate carried by the loop
Ra = Rayleigh number, RePr
Re = Reynolds number, VoD/ν
t = time
T = temperature

Vo = 1-D bulk induced velocity in the loop
U = dimensionless velocity component in x-

direction, u d/α
V = dimensionless velocity component in y-

direction, v d/α
(x, y, z) = Cartesian coordinates
Greek
α = thermal diffusivity
ß = thermal expansion coefficient
∆T = temperature difference between hot and

cold segments, TH-TC
ρo = density of the fluid
σ = electrical conductivity
µ = fluid viscosity
ν = kinematic viscosity of the fluid
θ = dimensionless temperature, (T-TC)/(TH-TC)
τ = shear stress in the channel
Subscripts
b = bulk values
C = cold
H = hot
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destabilisation or prohibition of motion. Another interest in such a system is
novel and appears fairly attractive when a direct energy conversion is
envisioned by using the thermosyphonic loop as a magentohydrodynamic
electrical generator. In some engineering devices, the MHD situation is brought
about as a side effect and may well be utilised for electricity generation. The
advantages of such a generator are obvious: it combines in a single unit the
functions of a conventional turbine and generator, it has no mechanical moving
parts, it can be made perfectly leakproof, and the absence of moving parts
makes it possible to use materials permitting operation at very high driving
temperature differences. Such an MHD generator can be particularly useful in
many specialised engineering applications, e.g. in aircraft. 

Several aspects of convective motion characteristics of single-phase closed
loop thermosyphon have been much discussed in literature particularly in
relation to stability characteristics. Creveling et al. (1975) studied the dynamics
of the thermosyphonic flow in a single circular loop system exhibiting typical
non-linear effects using one-dimensional analysis and they verified their model
with experimental observations. Also Erhard et al., (1989) and Davis and Roppo
(1987) investigated double-loop thermosyphonic systems, where two circular
loops were coupled by a heat exchanger for different coupling locations. Their
experiments and mathematical models confirmed the existence of a subcritical
buoyancy parameter range for which the flow alternatively exhibited steady
state as well as time dependent behaviour.

Recently, Ghaddar (1997) predicted the induced electric current in buoyancy-
driven side-heated loop containing an electrically conducting fluid in a
transverse magnetic field using an analytical one-dimensional model.
Ghaddar’s model was based on the use of Hartmann Plane-Poiseuille flow
solution for estimating loop shear stress and the 1-D model presented a closed
form solution of the steady induced flow and current from which optimal
conditions for maximum induced current were derived at low Prandtl number
fluids. 

No other work has been reported on the effect of a transverse magnetic field
for motion control in such loops. Actually other related work reported in the
literature has concentrated on buoyancy driven convection in enclosures with
the use of a transverse magnetic field to damp hydrodynamic motion,
particularly during manufacturing of crystals (Hart, 1983; Vasseur et al., 1995;
and Vives and Perry, 1987). Garandet et al. (1992) proposed an analytical
solution to the equations of magnetohydrodynamics that can be used for the
core flow in 2-D shallow cavities (Horizontal Bridgman configuration). Alchaar
et al. (1995) verified their model and solved the same equations numerically for
a wide range of Grashof, Hartmann and Prandtl numbers.

In this work, a numerical two-dimensional solution based on the loop
convection in the presence of a transverse magnetic field is developed using the
spectral element method. The numerical technique has previously undergone
rigorous numerical tests and optimisation for memory and CPU, but modified in
this work for the effect of the Lorentz force (Ghaddar 1996; Ghaddar et al.,
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1986c; Korzsak and Patera, 1986). The two-dimensional model will help us gain
insight into the relative influence of the physical parameters involved in the
problem and compare the numerical results obtained with the closed-form
solution using the Hatmann-Poiseuille model of Ghaddar (1997). The interplay
of driving density differences and damping effect of the magnetic forces onto
the flow is discussed. The induced electric current is evaluated with the
intention to optimise the mechanical/electrical energy conversion.

2. Problem statement
The essential features of the thermosyphonic-closed loop are shown in Figure 1.
The loop has a height 2L, an internal channel width of D = 2d. The upper and
lower connecting portions of the vertical channel are circular arcs. The fluid
contained in the loop is electrically conducting with an electrical conductivity σ,
a coefficient of thermal expansion β and a thermal diffusion coefficient α. The
magnetic field Bo is applied perpendicular to the gravity in the x-direction. The
thermophysical properties of the fluid at a reference temperature To are
assumed to be constant except for the density, which is related to temperature
according to the Boussinesq approximation of linear density, variation with
temperature, ρ=ρo[1-β(T-To)]. The right side of the loop walls is isothermally
heated to TH and the left side of the loop walls is isothermally cooled to TC,
which is taken as the reference temperature To. The connecting regions of the
loop of projected height l on each side are insulated. 

3. Mathematical formulation
Neglecting the effect of Joulean heating and viscous dissipation on heat transfer
and assuming that the induced magnetic field is very small compared to Bo, the
governing two-dimensional equations for continuity, momentum, energy and
electric charge are solved in the physical domain shown in Figure 1. The
equations are given in non-dimensional form as:

Continuity: (1)

Momentum in x-direction:

(2a)

Momentum in y-direction:

(2b)

Energy: 

(3)
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The electric charge transfer for zero applied electric field gives the induced
electric current j in the direction perpendicular to the plane of the magnetic field
and flow velocity as:

(4)

The equations (1) to (3) have been reduced to dimensionless form using the
following scales: length: D, velocity: α/D, time: D2/α and temperature: θ = (T-

Figure 1.
The essential features of

the thermosyphonic
closed loop
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TC)/∆T where ∆T = (TH-TC). The flow parameters as they appear in the
equations are Grashof number, Gr = gβ∆TD3/ν2, Ha is the Hartmann number,
Ha = BoD(σ/ρo ν)1/2, and Pr is the Prandtl number, Pr = ν/α . The square of the
Hartmann number represents the ratio of the Lorentz force to the viscous forces.
(For comparison, the quantity (σ/ρo ν)1/2 for mercury (Pr≈0.02) is about 2.7 × 105

while for sea water (Pr≈7) it is about 65.) 
The associated boundary conditions of equations (1) to (3) are given by:
U = V = 0 on all solid boundaries (5)
θ = 1 y<|L-l|/D and x<2.5 on the left-side wall (6a)
θ = 0 y >|L-l|/D and x>2.5 on the right-side wall (6b)

(6c)

The coupled equations (1)-(3) with boundary conditions (5)-(6) complete the
formulation of the problem. 

4. Numerical approach
The above coupled system of equations (1)-(3) is solved numerically for the
laminar steady-state solution using the spectral element method with the
appropriate boundary conditions (Korzsak and Patera, 1986). The numerical
approach of the spectral element method is that of direct simulation using initial
value solvers. The method is a high order, weighted residual technique that
exploits both the common features and the competitive advantages of low-order
finite element methods (generality and geometric flexibility) and the p-type
spectral techniques (accuracy and rapid convergence). 

The temporal discretization of the governing equations is performed using
the three-step splitting scheme (Karniadakis et al., 1991). The convective terms
and the buoyancy term are incorporated into the non-linear advection explicit
integration step using a third order Adams-Bashforth scheme. In the splitting
scheme, the applied Lorentz force and the buoyancy force are also incorporated
in the non-linear advection term in the explicit integration step. This is followed
by a split pressure step that uncouples continuity and pressure equations by
using an inviscid pressure boundary condition. The diffusion terms are treated
implicitly in a final step using second order Crank-Nicolson schemes. The
method has temporal accuracy of order ∆t2 for the velocities and a splitting
error of ∆t/Re for the pressure. 

The spatial discretization of the computational domain is done by dividing
the domain into general quadrangular macro-elements. Within each element,
the dependent and independent variables are presented in terms of high order,
tensor-product polynomial expansions with Chebyshev collocation points.
Typical grid systems are shown in Figure 2 having 18, 36 and 26 macro
elements respectively, with N × N (N = 9) local spectral resolution. Mixed
variational and collocation operators are used to generate the discrete equations
with interfacial continuity constraints imposed naturally via the variational
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statements. The spectral element code had been used and tested for accurately
simulating highly unsteady two-dimensional laminar flows with heat transfer
(Amon and Guzman, 1996; Ghaddar, 1996; Nigen and Amon, 1993a). Therefore
the technique is well suited for our problem. 

The computations were performed in double precision on a 586DX2-133MHz
PC using the Watcom Fortran Compiler. The time step size ∆t for the numerical
solution is governed by the Courant number stability condition of (∆tVmax/∆s)
< 0.7, where ∆s is the minimum grid size in either x or y direction. The solutions
were checked for convergence in both time-step and spatial degrees of freedom.
The convergence criterion was set relative to the change in temperature.
Convergence was achieved when the maximum change in temperature was less
than 10–5. Figure 3 shows a typical history plot of velocity and temperature for
a given point in the domain at (x = 0.5, y = 2) at Gr = 104 , Pr = 1 and Ha =1
where the steady state solution is approached through the solution of the
transient equations. An energy balance was performed for each converged
simulation to verify that the total heat transferred through the loop isothermal
cold walls in the upper half was actually equal to the total heat transferred

Figure 2.
Typical grid systems
having 18, 36 and 26

macro elements,
respectively, with N × N

(N = 7) local spectral
resolution

(a) L/d = 10 (b) L/d = 10 (c) L/d = 20
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Figure 3.
Typical history plot of
velocity and
temperature for a point
in the domain at (x =
2.5, y = 2) at Gr = 105,
Pr = 1 and Ha = 5
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Figure 4a.
The isotherms and

velocity vector plots of
the steady loop flow

illustrated for the case
of L/d = 10, l/L = 0.1, 

Pr = 1 at Gr = 2 × 103

and Ha = 0 

Isotherm Vector Plot

TT
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13 0.812599
12 0.750079
11 0.687558
10 0.625038
9 0.562518
8 0.499997
7 0.437477
6 0.374957
5 0.312436
4 0.249916
3 0.187396
2 0.124875
1 0.0623549

Vector scale = 0.025 cm/unit velocity
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Isotherm Vector Plot

TT
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Vector scale: 0.012 cm/unit velocity

Gr = 1 x 104 , Ha = 0
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Figure 4b.
The isotherms and
velocity vector plots of
the steady loop flow
illustrated for the case of
L/d = 10, l/L = 0.1, 
Pr = 1 at Gr = 104 and Ha
= 0
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Figure 4c.
The isotherms and

velocity vector plots of
the steady loop flow

illustrated for the case of
L/d = 10, l/L = 0.1, 

Pr = 1 at Gr = 104 and Ha
= 5 

Isotherm Vector Plot

TT
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Isotherm Vector Plot

TT
15 0.93764
14 0.875119
13 0.812599
12 0.750079
11 0.687558
10 0.625038
9 0.562518
8 0.499997
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Vector scale: 0.06 cm/unit velocity
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Figure 4d.
The isotherms and
velocity vector plots of
the steady loop flow
illustrated for the case of
L/d = 10, l/L = 0.1, 
Pr = 1 at Gr = 104 and Ha
= 20
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through the hot lower half. At the steady state conditions the error difference in
the balance was less than 0.011 per cent.

5. Results and discussions
Electroconducting fluids generally have small Prandtl numbers and
consequently inertia effects are expected to be significant even with a small
driving temperature difference. In this section, some representative simulation
results are presented to illustrate the effect of various controlling parameters on
the flow and its thermal behaviour. Computations are also carried out for
selected sample runs to compare with the analytical model of Ghaddar (1996). 

Figure 5a.
The isothermal

contours of the pure
conduction case in the

loop
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5.1 Flow and thermal behaviour of the 2-D side-heated loop
The isotherms and velocity vector plots of the steady loop flow are illustrated in
Figures 4(a-d) for the case of L/d = 10, l/L = 0.1, Pr = 1 at (a) Gr = 2 × 103 and
Ha = 0 (b) Gr = 104 and Ha = 0, (c) Gr = 104 and Ha = 5 and (d) Gr = 104 and Ha
= 20. As the Grashof number is increased, the bulk temperature and wall
temperature difference increases and the warm and/or cold fluid becomes
sharper as it enters the upper and/or lower bends of the loop. The retarding
effects of the magnetic drag on the flow pattern is seen Figure 4(c) and 4(d)
where the increase in Hartmann number inhibits any convective circulation at
the bends’ entrances and a more parallel flow is attained. The fluid in the
upward going side assumes the wall temperature at almost 1/3 height for the
case of Ha = 20 compared to full height at Ha = 5 (compare isotherms of 4(c) and

TT
15 0.93764
14 0.875119
13 0.812599
12 0.750079
11 0.687558
10 0.625038
9 0.562518
8 0.499997
7 0.437477
6 0.374957
5 0.312436
4 0.249916
3 0.187396
2 0.124875
1 0.0623549

Gr = 104, Ha = 0, Pr = 0.02

1

1

15

15

Figure 5b.
The isothermal
contours of Gr = 104 at
Pr = 0.02
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4(d)). This is due to decreased convective motions. In all the graphs, the flow in
the vertical part of the channel is parallel. Figure 5 shows the isothermal
contours of (a) the pure conduction case in the loop, (b) Gr = 104 at Pr = 0.02 and
Ha = 0 and (c) Gr = 104 at Pr=1 and Ha = 0. The isothermal patterns are
strongly affected by Prandtl number. At low Prandtl, the weak coupling
between momentum and energy equations results in smaller gradients of the
isotherms in the domain. 

The geometric parameter, L/d, representing the loop height over width, may
affect the parallelism of the flow in the channel. Figure 6 shows the velocity
vector plots and the isotherms for the cases of Pr = 0.02, Ha = 0, Gr = 104 at (a)

TT
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14 0.875119
13 0.812599
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11 0.687558
10 0.625038
9 0.562518
8 0.499997
7 0.437477
6 0.374957
5 0.312436
4 0.249916
3 0.187396
2 0.124875
1 0.0623549

Gr = 104, Ha = 0, Pr = 1
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Figure 5c.
The isothermal

contours of Gr = 104 at
Pr =1
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Isotherm Vector Plot

TT
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Vector scale = 0.1 cm/unit velocity
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Figure 6a.
The velocity vector
plots and the isotherms
for the cases of Pr =
0.02, Ha = 0, Gr = 104 at
L/d = 10 and l/L = 0.1 
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Figure 6b.
The velocity vector

plots and the isotherms
for the cases of Pr =

0.02, Ha = 0, Gr = 104 at
L/d = 20 & l/L = 0.1
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Vector scale = 0.08 cm/unit velocity

L/d = 20, Pr = 0.02
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Figure 7.
The velocity profile, V
across the channel at y
= –3.5 in both the down
going flow side and
upward going flow, for
Gr = 104 at various
values of Hartmann
number, Ha = 0, 5, 10
and 20 for (a) Pr = 1 and
(b) Pr = 0.02
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Figure 8.
The dimensionless

temperature profiles are
shown for the case of a
loop with L/d = 10 and
l/L = 0.1 at (a) y = –3.5

of the upward going
flow and for (b) y =

+3.5 of the downward
going flow for Gr = 2 ×
103 at various values of
Hartmann number, Ha

= 0, 2, 4 and 5.
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L/d = 10 and l/L = 0.1 and (b) L/d = 20 and l/L = 0.1. It is clear that the
parallelism in the flow is disturbed in shorter and thicker channels particularly
close to the upper and lower bends. 

5.2 Velocity and temperature profiles
Figure 7 shows the velocity profile, V across the channel at y = –3.5 in both the
down going flow side and upward going flow for Gr = 104 at various values of
Hartmann number, Ha = 0, 5, 10 and 20 for (a) Pr = 1 and (b) Pr = 0.02. As the
cold fluid is coming through the insulated region into the heated section, the
velocity profile becomes sharper due to enhanced motion by buoyancy. The
velocity profiles in the cold section, before the fluid enters the insulated section,

Figure 9.
The temperature
profiles at y = –2, Ha =
1, Pr = 1 for different
values of Grashof
number
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have higher velocity gradients than gradients after the fluid enters the hot
section. These profiles are similar to plane Poiseuille flow profiles, because by
the end of the cold region the fluid bulk temperature has approached the cold
wall temperature and the physical situation then resembles a channel flow
driven by a pressure gradient. However, the parallelism and symmetry of the
flow are maintained for the most part of the channel. For high Hartmann
number, the velocity becomes constant over almost the entire section and the
shear stress rises at the wall.

In Figure 8, the dimensionless temperature profiles are shown for the case of
a loop with L/d =10 and l/L = 0.1 at (a) y = –3.5 of the upward going flow and
for (b) y = +3.5 of the downward going flow for Gr = 2 × 103 at various values
of Hartmann number, Ha = 0, 2, 4 and 5. As Hartmann number is increased, the
profiles become flatter and the bulk temperature becomes lower. The difference
in the symmetrical parallel profiles at y = ±3.5 is noted due to the fact that one
is for a hot fluid entering a cold channel and the other for a cold fluid entering a
hot channel in the loop. Figure 9 shows the temperature profiles in the upward
moving flow at y = –2, Ha=1, Pr =1 for different values of Grashof number. The

Figure 10.
The calculated and

analytically predicted
Reynolds number of the

flow as a function of
Grashof number at Had
= 0, 3, 5 and 10 for the
case of l/L = 0.1, L/d =

10 at Pr = 1101 102 103 104 105 106
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Figure 11.
The calculated and
analytically derived
electric current
expressed in terms of
the dimensionless
current parameter ReHa
= jd2/{ν(σµ)1/2}, as a
function of Grashof
number for (a) Pr = 1
and (b) Pr = 0.02
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temperature difference between bulk and wall temperature increases as
Grashof number is increased.

5.3 Effect of magnetic field on induced velocity; comparison with 1-D model
Of interest here is the relation of the induced velocity to the driving buoyancy
force and the retarding Lorentz force. The induced bulk velocity circulating in
the loop is calculated from the 2-D simulations at various Grashof and
Hartmann numbers. As mentioned earlier, the effect of a transverse magnetic
field on buoyancy-driven convection in a loop has been studied recently by
Ghaddar (1996) based on the parallel flow approximation for L/d >>1 where a
Hartmann-Poiseuille channel flow is used for modelling the shear stress. It was
demonstrated in the 1-D model that the average induced bulk velocity is
correlated to the Grashof number of the flow by:

(7)

Where Re is the Reynolds number, Red = Vod/ν, Vo is the bulk induced 1-D
velocity in the loop, Nu is the Nusselt number, Nud = hd/k, and F is a bounded
parameter (0 ≤ F ≤ 1) that depend also on the flow Reynolds number, Prandtl
number and Nusselt number[2]. The non-dimensional bulk velocity of the
calculated two-dimensional flow is related to the Reynolds number of the
induced 1-D flow by Red = Vb/2Pr = 0.5Re where Vb= (1/D)

0
∫
1
Vdx and Re =

VbD/Pr. The parameter F was found by Ghaddar (1996) to approach unity for
very low Prandtl numbers (F→1 for Pr<<1). The correlation of equation (7) is
strictly valid for the limit of L/d>>1, and will be now compared with the 2-D
simulation results.

Figure 10 shows the calculated and analytically predicted Reynolds number
of the flow as a function of Grashof number at Had = 0, 3, 5 and 10 for the case
of l/L = 0.1, L/d =10 at Pr =1. The analytical results of equation (7) are
continuous lines; numerical results shown as circles are seen to agree well for
the large L/d ratio with both the 1-D models which slightly overpredict the
induced flow Reynolds number. Figure 11 shows the calculated and analytically
derived electric current expressed in terms of the dimensionless current
parameter RedHad = jd2/{ν(σµ)1/2}, as a function of Grashof number at L/d = 10
at various values of Hartmann number for (a) Pr = 1 and (b) Pr = 0.02. At fixed
Hartmann number, the induced current increases as the Grashof number is
increased due to increased buoyancy force that directly affects the flow. The
two-dimensional simulation predictions agree well with 1-D model results
where the data fall within an error of 5-12 per cent.
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Figure 12.
The 2-D predicted
results of the induced
electric current as a
function of the
Hartmann number for
(a) Pr = 1 and (b) Pr =
0.02 at different values
of Grashof number
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Figure 13.
A plot of the heat

transfer parameter, Nu
is plotted as a function

of loop vertical position
y, for different values of

Hartmann numbers at
Gr = 104, L/d = 10 and
l/L = 0.1 for (a) Pr = 1

and (b) Pr = 0.02.
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5.4 Optimal Hartmann number for maximum induced current
The 1-D model predicted that at low Prandtl numbers, the induced electric
current parameter jd2/{ν(σµ)1/2}had an optimal Hartmann number that
maximised the induced current (Ghaddar, 1996). It was interesting that the
maximum induced current for low Prandtl fluid occurred at a quite low
magnetic field strength and the optimal Hartmann number increased as the
Grashof number increased. In the present 2-D model, a number of simulations
are performed at fixed Grashof numbers to locate the optimal Hartmann
number for Pr = 1 and Pr = 0.02, and complete the comparison with 1-D model. 

Figure 12 shows the 2-D predicted results of the induced electric current as a
function of the Hartmann number for (a) Pr = 1 and (b) Pr = 0.02 at different
values of Grashof number at L/d = 10, based on 2-D computer simulations. It is
very clear that a peak of J existed at an optimal value of Hartmann number,
Haopt, not only for low Prandtl number but also for Pr = 1. This optimal
strength of the magnetic field is weakly dependent on Grashof number as
predicted by the 1-D models for low Prandtl numbers. For example at for Pr =
0.02, the maximum current is at Haopt = 4.2, and 7.2 for Gr = 104 and 105

respectively. For Pr =1 Haopt = 5.1, 6.2 and 6.8 for Gr = 103, 2 × 103 and 104

respectively. The optimal Hartmann number increases as Grashof number is
increased consistent with 1-D predictions. The 1-D model predicted Hopt for low
Prandtl number to follow closely the correlation (Ghaddar, 1996):

(8)

which gives a higher estimation of about 2-13 per cent than the 2-D model. This
is explained by the presence of the circular upper and lower parts of the loop
where the curvature adds a higher drag to the flow as compared with the
straight channel model. The higher the L/d ratio, the better the representation is
of the 2-D simulations with the 1-D analytical model. The 2-D simulation has
shown the existence of an optimal Hartmann number for Pr = 1 which is not
reported in the 1-D model. 

In the laminar range of the induced steady flow, the presence of Hopt is very
significant in terms of improving the system efficiency of conversion from
thermal/mechanical to electrical in the system in presence of a lower strength
magnetic field. The heat transfer carried from the heat source (hot left side of
the loop) to the heat sink (cold right side of the loop) is given by:

(9)

where Nu represent the local Nusselt number taken along either of the un-
insulated isothermal portions. In Figure 13, the heat transfer parameter, Nu, is
plotted as a function of loop vertical position y, for different values of Hartmann
numbers at Gr = 104, L/d = 10, l/L = 0.1 for (a) Pr =1 and (b) Pr = 0.02. The
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Nusselt number is maximum as the fluid exits the insulated region to either the
heated wall or to the cooled wall, and as the fluid bulk temperature approaches
the wall temperature, the Nusselt number drops way below the plane Poiseuille
fully developed Nusselt number of 3.77. The rate of heat transfer in presence of
a magnetic field decreases as Hartmann number is increased, at fixed Grashof
number.

Conclusions
A numerical two-dimensional analysis was carried out using the spectral
element method to study the hydrodynamics and heat transfer of buoyancy-
driven electrically-conducting fluid in a vertical loop placed in a transverse
magnetic field. The numerical model results were compared with the closed
form analytical one-dimensional solution of Ghaddar (1996). At high Grashof
number only a low strength magnetic field is required to get a significant
induced electric current. 

Future work will address the optimisation of the system parameters to arrive
at conditions that maximise the induced electric current and to consider the
conversion efficiency of thermal/mechanical to electrical energy of the described
magnetohydrodynamic generator.
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